Motivational Problems on Exponential and Logarithmic Functions Schettino

Exeter/EWS Materials

- 1. Is the graph of $f(x) = b^x$ one-to-one? What are the restrictions on b? Explain.
- 2. (Continuation) Find the inverse of $g(x) = 3^x$. Are you able to solve for y in terms of x?
- 3. (Continuation) Explain the phrase *y*=*the power of b that produces x*. How does this relate to your expression for the inverse function?
- 4. Find the exponent that gives you the answer when the base is raised to that power in each row of the table below:

Base (b)	Answer Produced (x)	Exponent(y)
3	27	
10	1000	
2	1/8	
25	5	
1/2	1/16	

- 5. John Napier (1550-1617) created the notation $\log_b x$ to replace the phrase *the power of b that produces x.* $\log_b x$ is read as "the logarithm (or log) base *b* of *x*." How would you write "4 is the power of 2 that produces 16?"
- 6. Rewrite the equation $\log_3 81 = 4$ as an exponential equation.
- 7. Write each equation in its exponential form.

(a)
$$\log_4 \frac{1}{16} = -2$$
 (b) $\log_2 16 = 4$ (c) $\log_2 8 = x$ (d) $\log_5 1 = x$

- 8. What is the inverse of $2^{y} = x$? Do you recognize this function? Can you graph it by reflecting it across the line y=x?
- 9. Express $3^2 = 9$ as a logarithm.
- 10. Change each exponential equation into a logarithmic form.

Motivational Problems on Exponential and Logarithmic Functions Schettino

Exeter/EWS Materials

a. $5^{-2} = \frac{1}{25}$ b. $7^0 = 1$ c. $2^4 = 16$ d. $6^1 = 6$

- 11. If the logarithmic function $y = \log_b x$ is the inverse function of the exponential function $y = b^x$, what is the domain and range of $y = \log_b x$?
- 12. Explain my mantra "the answer is the exponent" when thinking about the equation $\log_b x$?
- 13. Given a positive number p, the solution to $10^x = p$ is called the *base-10 logarithm of* p, expressed as $x = \log_{10} p$, or simply $x = \log p$ (the 10 is implied when no base is written). For example, $10^4 = 10000$ means that 4 is the base-10 logarithm of 10000, or $4 = \log 10000$. The LOG function on your calculator provides immediate access to such numerical information. Using your calculator for confirmation, and remembering that *logarithms are exponents*, explain why it is predictable that (a) log 64 is three times log 4;
 - (**b**) $\log 12$ is the sum of $\log 3$ and $\log 4$;
 - (c) log 0.02 and log 50 differ only in sign.
- 14. There is a LOG button on your calculator. Try LOG 3, LOG .001, LOG 100, LOG 10. Explain the meaning of this button. What assumption does your calculator make when evaluating the log?
- 15. Sketch the graph of $f(x) = \log_4 x$ by hand. Be sure to include at least 3 coordinate pairs. What is the domain and range?
- 16. Consider the graph of $f(x) = \log_4 x$ a "parent function" that you now know. You can graph transformation of this parent function just like others. Attempt to graph the following functions and then check with your calculator:
 - a. $f(x) = \log_4(x+1)$
 - b. $g(x) = \log_4 x 5$
 - c. $h(x) = \frac{1}{2}\log_4(x-2)$
 - d. $k(x) = 6 \log_4 x$
- 17. Without using your calculator, solve each of the following equations. Explain why they all have the same answer.
- a. $8^x = 32$ b. $27^x = 243$ c. $1000^x = 100,000$

Motivational Problems on Exponential and Logarithmic Functions Schettino

Exeter/EWS Materials

- 18. What if the base of an exponential equation isn't 10? One way of solving an equation like $1.02^{x} = 3$ is to use your calculator's LOG function to rewrite the equation in the form $(10^{0.0086})^{x} = 10^{0.4771}$. First justify why these are the same equation, then solve $(10^{0.0086})^{x} = 10^{0.4771}$.
- 19. Rewriting 1.02 as $10^{0.0086}$ is the same as finding what logarithm? Rewriting 3 as $10^{0.4771}$ is the same as find what other logarithm?
- 20. How might you find $\log_5 8$ using only the common logarithm (or LOG function on your calculator which is base 10)?
- 21. Given that $10^{0.301} = 2$ and $10^{0.477} = 3$, solve without a calculator:

a. $10^{x} = 6$ b. $10^{x} = 8$ c. $10^{x} = \frac{2}{3}$ d. $10^{x} = 1$

- 22. Give that $0.301 = \log 2$ and $0.477 = \log 3$, you should not need a calculator to evaluate
 - a. $\log 6$ b. $\log 8$ c. $\log \frac{2}{3}$ d. $\log 1$
- 23. Given that $m = \log a$, $n = \log b$, and $k = \log(ab)$
 - a. Express a, b, and ab as powers of 10
 - b. Use your knowledge of exponents to discover a relationship among m, n, and k
 - c. Conclude that $\log(ab) = \log a + \log b$
 - d. Find a way to show that $log(a^r) = r log a$ where r is some exponent
 - e. Similar to part c, Find a way to show that $\log\left(\frac{a}{b}\right) = \log a \log b$
- 24. Another approach to solving an equation like $5^x = 20$ is to calculate base-10 logarithms of both sides of the equation. Justify the equation $x \log 5 = \log 20$, then obtain the answer in the form $x = \frac{\log 20}{\log 5}$. Evaluate the expression. Note that $\log_5 20 = \frac{\log 20}{\log 5}$.
- 25. Write an expression for $\log_b N$ that refers only to base-10 logarithms and explain.
- 26. Asked to simplify $\frac{\log 20}{\log 5}$, Brett replied "log4". What do you think of this answer?