Consider the parent graph of the rational function $f(x) = \frac{1}{x}$

Complete each of the following tables of values for f(x). Use tables (a), (b), (c), and (d) to answer questions (a), (b), (c), and (d) respectively. (a) (b) (c) (d)

(0)		(8)		(0)			(4)		
X	<i>f(x)</i>	x	<i>f(x)</i>		X	<i>f(x)</i>	X	<i>f(x)</i>	
-1		1			-1		1		
-0.1		0.1			-10		10		
-0.01		0.01			-100		100		
-0.001		0.001			-1,000		1,000		
-0.0001		0.0001			-10,000		10,000		

- (a) What do the values of f(x) approach as the value of x approaches zero from the negative side? (As $x \rightarrow 0$ and x<0 what does $f(x) \rightarrow ?$)
- (b) What do the values of f(x) approach as the value of x approaches zero from the positive side? (As $x \rightarrow 0$ and x > 0 what does $f(x) \rightarrow ?$)
- (c) What do the values of f(x) approach as the value of x gets smaller and smaller? (As $x \rightarrow -\infty$ what does $f(x) \rightarrow$?)
- (d) What do the values of f(x) approach as the value of x gets bigger and bigger? (As $x \rightarrow \infty$ what does $f(x) \rightarrow$?)
- (e) What is the value of *f*(0)?

OVER

(f) Think of the graph of this function. The line x = 0 is the <u>vertical asymptote</u> of this function. What does this mean in terms of the y-values of the graph?

(g) A <u>horizontal asymptote</u> occurs if a rational function approaches a *y*-value for *x*-values far from the origin (when gets arbitrarily large or small). The line y = 0 is the <u>horizontal asymptote</u> of

this function. What does this mean in terms of the y-values of the graph of $f(x) = \frac{1}{x}$?

Consider the graph of the function $f(x) = \frac{2x+3}{x^2-5x+6}$

- a. Using your graphing calculator's table, look at very large positive values of x (you can change the x-values in the TableSet window). What number do the y-values seem to be approaching?
- b. Now look at very large negative values of x in the same way (like -10,000, 100,000). What number do the y-values seem to be approaching?
- c. What x-values are restricted from the domain of this function?(removed from the set of all real numbers)
- d. What happens to the y-values of the function as x approaches those restricted values?